Hagnýtt stærðfræði


Hagnýtt stærðfræði
BS gráða – 180 einingar
BS próf í hagnýttri stærðfræði gefur góðan grunn fyrir störf við vísindalega útreikninga og tölfræði sem og framhaldsnám á hinum ýmsu sviðum hagnýttrar stærðfræði.
Auk hagnýtingarinnar kynnast nemendur fræðilegum grunni aðferðanna sem nýtist þeim vel í glímu við ný verkefni.
Skipulag náms
- Haust
- Heildahagfræði I (Þjóðhagfræði I)
- Fjármálahagfræði I
- Línuleg algebra A
- Tölvunarfræði 1a
- Stærðfræðigreining IAB
- Stærðfræðigreining IB
- Vor
- Fjármálahagfræði II
- Aðgerðagreining
- Tölvur, stýrikerfi og tölvufærni
- Líkindareikningur og tölfræði
- Stærðfræðigreining II
- Inngangur að líkindafræði
Heildahagfræði I (Þjóðhagfræði I) (HAG103G)
Markmið námskeiðsins er að veita nemendum innsýn í helstu kenningar og hugtök heildahagfræði. Fjallað verður um lögmál efnahagslífsins og helstu grundvallarkenningar heildahagfræðinnar um þróun hagstærða til skamms og langs tíma ásamt helstu hugtökum í efnahagsumræðu. Áhersla er lögð bæði á fræðilegt inntak og hagnýtt gildi námsefnisins og tengsl þess við ýmis efnahagsmál, sem eru ofarlega á baugi á Íslandi og erlendis. Staðgóð þekking á þjóðhagfræði býr nemendur undir ýmis önnur námskeið, og lífið.
Fjármálahagfræði I (HAG106G)
Markmiðið námskeiðsins er annars vegar að kynna nemendur fyrir grunnatriðum fjármála og fjármálahagfræði og hins vegar að þjálfa færni þeirra í því að leysa raunhæf verkefni á þessu sviði. Farið er yfir, vexti og vaxtaútreikninga, mismunandi tegundir fjármálagerninga, virkini og tegundir fjármálamarkaða og kenningar um skilvirkni markaða. Aðferðir við að meta virði fjármálagerninga með tilliti til tímavirðis og óvissu. Þá verður áhersla á að kynna nemendum fyrir innlendum fjármálamörkuðumi og virkni þeirra. Nemendur öðlist skilning á fórnarskiptum áhættu og ávöxtunar, s.s. með aðstoð CAPM líkansins. Loks er fjallað um samval eigna byggt á Markowitz líkaninu og áhættu með hliðsjón af nytjaföllum.
Línuleg algebra A (STÆ106G)
Fjallað er um undirstöðuatriði línulegar algebru yfir rauntölurnar með áherslu á fræðilegu hliðina.
Viðfangsefni: Línuleg jöfnuhneppi,fylkjareikningur, Gauss-eyðing og Gauss-Jordan-aðferð. Vigurrúm og hlutrúm þeirra. Línulega óháð hlutmengi, grunnar og vídd. Línulegar varpanir, myndrúm og kjarni. Depilmargfeldi, lengd og horn. Rúmmál í margvíðu hnitarúmi og krossfeldi í þrívíðu. Flatneskjur og stikaframsetning þeirra. Hornrétt ofanvörp og þverstaðlaðir grunnar. Aðferð Grams og Schmidts. Ákveður og andhverfur fylkja. Eigingildi, eiginvigrar og hornalínugerningur.
Tölvunarfræði 1a (TÖL105G)
Einingar til BS-prófs gilda aðeins fyrir annaðhvort TÖL101G Tölvunarfræði 1 eða TÖL105G Tölvunarfræði 1a.
Forritun í Python (sniðið að verkfræðilegum og raunvísindalegum útreikningum): Helstu skipanir og setningar (útreikningur, stýri-setningar, innlestur og útskrift), skilgreining og inning falla, gagnatög (tölur, fylki, strengir, rökgildi, færslur), aðgerðir og innbyggð föll, vigur- og fylkjareikningur, skráavinnsla, tölfræðileg úrvinnsla, myndvinnsla. Hlutbundin forritun: klasar, hlutir, smiðir og aðferðir. Hugtök tengd hönnun og smíði tölvukerfa: Forritunarumhverfi, vinnubrögð við forritun, gerð falla- og undirforritasafna og tilheyrandi skjölun, villuleit og prófun forrita.
Stærðfræðigreining IA (STÆ101G)
Talnakerfin. Rauntölur og hugtökin efra mark og neðra mark, tvinntölur. Mengi náttúrulegra talna og þrepasannanir. Föll og varpanir. Runur og runumarkgildi. Raðir. Samleitnipróf og skilorðsbundin samleitni raðar. Markgildi og samfelld föll. Helstu eiginleikar samfelldra falla. Hornaföll. Diffrun. Helstu reglur um diffrun. Útgildi. Meðalgildissetningin. Nálgun diffranlegra falla með margliðum. Tegrun. Tengsl tegrunar og diffrunar. Ýmis algeng föll. Ýmsar aðferðir til að reikna út stofnföll. Veldaraðir. Fyrsta stigs diffurjöfnur. Tvinngild föll og annars stigs diffurjöfnur.
Stærðfræðigreining I (STÆ104G)
Rauntölur. Markgildi og samfelld föll. Deildanleg föll, reglur um afleiður, afleiður af hærri röð, stofnföll. Notkun deildareiknings: Útgildisverkefni, línuleg nálgun. Torræð föll. Meðalgildissetning, setningar l'Hôpitals og Taylors. Heildun: Ákveðin heildi og reiknireglur fyrir þau. Undirstöðusetning deilda- og heildareikningsins. Heildunartækni, óeiginleg heildi. Notkun heildareiknings: Bogalengd, flatarmál, rúmmál, þungamiðjur. Runur og raðir, samleitnipróf. Veldaraðir, Taylor-raðir. Venjulegar afleiðujöfnur: Aðskiljanlegar og einsleitar afleiðujöfnur fyrstu raðar, línulegar afleiðujöfnur fyrstu raðar, línulegar afleiðujöfnur annarrar raðar með fastastuðlum.
Fjármálahagfræði II (HAG208G)
Markmið námskeiðsins er þríþætt. Í fyrsta lagi að kynna fyrir nemendum grunnatriði reikningsskila og fjárhagsbókhalds þannig að þeir verði þokkalega læsir á ársreikninga fyrirtækja. Í öðru lagi að nemendur geti greint og metið upplýsingar og helstu verðkennitölur úr ársreikningum fyrirtækja og túlkað þær fyrir þeim sem þurfa á þessum upplýsingum að halda. Í þriðja lagi að nýta upplýsingar úr ársreikningum til þess að framkvæma verðmat á viðkomandi útgáfuaðila sem er byggt á sjóðstreymi.
Aðgerðagreining (IÐN401G)
Í námskeiðinu er nemendum kynnt hvernig gera á skipulega mynd af ákvörðunar- og bestunarverkefnum í aðgerðagreiningu.
Að námskeiði loknu eiga nemendur að hafa færni í að setja upp, greina og leysa stærðfræðileg líkön sem standa fyrir raunhæfum verkefnum og hvernig meta eigi lausn þeirra á gagnrýninn hátt. Tekin eru fyrir línuleg bestun og Simplex aðferðin, auk skyld fræðileg efni.
Námskeiðið kynnir auk þess stærðfræðileg líkön fyrir einstök verkefni; flutningsverkefni, úthlutunarverkefni, netverkefni og heiltölubestun. Nemendur kynnast einnig sérhæfðu forritunarmáli við líkangerð fyrir línulega bestun.
Tölvur, stýrikerfi og tölvufærni (TÖL205G)
Í þessu námskeiði er snert á mörgum hlutum sem tengjast tölvufærni. Markmið námskeiðsins er að kynna nemandann fyrir mörgum hugtökum án þess þó að kafa djúpt í hvert hugtak.
Kynning á stýrikerfinu Unix. Skipulag skráakerfis, helstu hjálparforrit, gluggakerfi, skipanalínuvinnsla og skeljarforritun. Einnig er farið yfir ritla í skelinni og höndlun gagna í henni. Farið er yfir útgáfustjórnunarkerfi eins og Git, notkun aflúsunaraðferða og aðferða til að byggja hugbúnað. Farið er yfir algeng hugtök í dulmálsfræðum og kynnt eru hugtök á borð við sýndarvélar og gáma.
Líkindareikningur og tölfræði (STÆ203G)
Fjallað er um frumatriði líkinda- og tölfræði á grundvelli einfaldrar stærðfræðigreiningar.
Viðfangsefni:
Útkomurúm, atburðir, líkindi, jöfn líkindi, óháðir atburðir, skilyrt líkindi, Bayes-regla. Slembistærð, dreififall, þéttleiki, samdreifing, óháðar stærðir, skilyrt dreifing. Væntigildi, miðgildi, dreifni, staðalfrávik, samdreifni, fylgni, lögmál mikils fjölda. Bernoulli-, tvíkosta-, Poisson-, jöfn-, veldis- og normleg stærð. Höfuðmarkgildisreglan. Poisson-ferli. Úrtak, lýsistærð, dreifing meðaltals og dreifing úrtaksdreifni í normlegu úrtaki. Punktmat, sennileikametill, meðalferskekkja, bjagi. Bilmat og tilgátupróf fyrir normleg, tvíkosta- og veldisúrtök. Einföld aðhvarfsgreining. Mátgæði og tengslatöflur.
Stærðfræðigreining II (STÆ205G)
Opin mengi og lokuð. Varpanir, markgildi og samfelldni. Deildanlegar varpanir, hlutafleiður og keðjuregla. Jacobi-fylki. Stiglar og stefnuafleiður. Blandaðar hlutafleiður. Ferlar. Vigursvið og streymi. Sívalningshnit og kúluhnit. Taylor-margliður. Útgildi og flokkun stöðupunkta. Skilyrt útgildi. Fólgin föll og staðbundnar andhverfur. Ferilheildi, stofnföll. Heildun falla af tveimur breytistærðum. Óeiginleg heildi. Setning Greens. Einfaldlega samanhangandi svæði. Breytuskipti í tvöföldu heildi. Margföld heildi. Breytuskipti í margföldu heildi. Heildun á flötum. Flatarheildi vigursviðs. Setningar Stokes og Gauss.
Inngangur að líkindafræði (STÆ210G)
Þetta er viðbót við námskeiðið "Líkindareikningur og tölfræði" STÆ203G. Farið er ítarlegar í frumatriði líkindafræðinnar með áherslu á skilgreiningar og sannanir. Námskeiðið er undirbúningur fyrir M-námskeiðin tvö í líkindafræði og M-námskeiðin tvö í tölfræði sem kennd eru á víxl annað hvert ár.
Viðfangsefni umfram þau sem koma við sögu í líkindahluta STÆ203G:
Skilgreining Kolmogorovs. Útleiðslur á reglum um samsetta atburði og skilyrt líkindi. Útleiðsla fyrir strjálar og samfelldar stærðir á reglum um væntigildi, dreifni, samdreifni, fylgni, og skilyrt væntigildi og dreifni. Útleiðslur á reglum um Bernoulli-, tvíkosta-, Poisson-, jafnar, veldis-, normlegar og gamma-stærðir. Útleiðsla á halasummureglu væntigildis og útleiðsla á væntigildi strjálu veldisstærðarinnar. Útleiðsla á reglunni um minnisleysi og veldisstærðir. Útleiðsla á dreifingum summu óháðra stærða s.s. tvíkosta-, Poisson-, normlegra og gamma-stærða. Líkinda- og vægisframleiðsluföll.
- Haust
- Hagnýtt línuleg tölfræðilíkön
- Fjármálamarkaðir
- Stærðfræðigreining III
- Gagnasafnsfræði
- Vor
- Kennileg töluleg greining
- SlembiferliE
- Mengi og firðrúm
- Stærðfræðigreining IV
- Töluleg greining
Hagnýtt línuleg tölfræðilíkön (STÆ312M)
Í námskeiðinu er fjallað um einfalda og fjölvíða aðhvarfsgreiningu ásamt fervikagreiningu (ANOVA) og samvikagreiningu (ANCOVA). Að auki er farið í tvíkosta aðhvarfsgreiningu (binomial regression) og rætt um hugtök því tengt, svo sem gagnlíkindi (odds) og gagnlíkindahlutfall (odds ratio).
Námskeiðið er framhald af dæmigerðu grunnnámskeiði í tölfræði sem kennd eru á hinum ýmsu sviðum skólans. Farið verður í aðferðir til að meta stika í línulegum líkönum, hvernig smíða má öryggisbil og kanna tilgátur fyrir stikana, hverjar forsendur líkananna eru og hvað hægt sé að gera sé þeim ekki fullnægt. Verkefni eru unnin í tölfræðihugbúnaðinum R.
Fjármálamarkaðir (VIÐ505G)
Í siðmenntuðum ríkjum mynda fjármálastofnanir stoðkerfi efnahagslífsins. Hlutverk þeirra er að styðja fólk og fyrirtæki í allri framleiðslu þeirra og framkvæmdum, sem og að liðsinna í áhættustjórnun, áhættu, sem fólk og fyrirtæki tekst á hendur. Afar mikilvægt er að öðlast skilning á tilgangi og innri virkni fjármálafyrirtækja, til þess að geta séð fyrir um hegðun þeirra og framþróun. Þannig má öðlast færni við að draga ályktanir um áhrif þessara stofnana á raunhagkerfið sjálft frá einum tíma til annars, í einu landi eða öðru. Þetta námskeið miðar af því að kynna fjármálafræði (e. theory of finance) í gegnum sögu fjármálastofnana og fjármálaþjónustu, svo sem banka, greiðslumiðlunar, tryggingafélaga, seðlabanka, verðbréfamarkaða og afleiðumarkaða. Farið verður yfir styrkleika þessara stofnana sem og ófullkomleika, til að varpa ljósi á það, hvert þessar stofnanir stefna til framtíðar. Íslenska bankahrunið býður upp á ótal dæmi, sem dreginn verður lærdómur af í gegnum allt námskeiðið.
Stærðfræðigreining III (STÆ302G)
Í námskeiðinu er fjallað undistöðuatriði um tvö svið
stærðfræðigreiningar, tvinnfallagreiningu og afleiðujöfnur, með áherslu á hagnýtingu og útreikninga á lausnum.
Viðfangsefni: Tvinntölur og varpanir á svæðum í tvinntalnasléttunni. Föll af einni tvinnbreytistærð. Fáguð föll. Veldisvísisfallið, lograr, rætur og horn. Cauchy-setningin og Cauchy-formúlan. Samleitni í jöfnum mæli. Veldaraðir. Laurent-raðir. Leifareikningur. Hagnýtingar á tvinnfallagreiningu í straumfræði. Venjulegar afleiðujöfnur og afleiðujöfnuhneppi. Línulegar afleiðujöfnur með fastastuðlum. Ýmsar aðferðir til að reikna út sérlausnir. Green-föll fyrir upphafsgildisverkefni. Línuleg
afleiðujöfnuhneppi. Veldisvísisfylkið. Veldaraðalausnir og aðferð Frobeniusar. Laplace-ummyndun og notkun hennar við lausn á afleiðujöfnum. Leifaformúlur fyrir Fourier-myndir og andhverfar Laplace-myndir.
Gagnasafnsfræði (TÖL303G)
Gagnasöfn og gagnasafnskerfi. Einindavenslalíkanið. Töflulíkanið og töflualgebra. SQL fyrirspurnarmálið. Hagkvæmni geymsluaðferða og úrvinnsluaðferða. Fallákveður, lyklar og staðalskipulag gagna í venslalíkaninu. Bestun fyrirspurna. Hreyfingar, samhliða vinnsla hreyfinga og læsingar. Endurbygging gagnasafna. Öryggi gagnasafna og aðgangsheimildir. Vöruhús gagna.
Kennileg töluleg greining (STÆ412G)
Þetta er viðbót við námskeiðið "Töluleg greining" STÆ405G. Farið er ítarlegar og fræðilegar í efnið sem tekið er fyrir í Tölulegri greiningu (STÆ405G) með áherslu á sannanir.
Slembiferli (STÆ415M)
Inngangsatriði slembiferla með megináherslu á Markovkeðjur.
Viðfangsefni: Hittitími, stöðuþáttun, óþáttanleiki, lota, endurkvæmni (jákvæð og núll-), hverfulleiki, tenging, endurnýjun, jafnvægi, tíma-viðsnúningur, tenging úr fortíðinni, greinaferli, biðraðir, martingalar, Brownhreyfing.
Mengi og firðrúm (STÆ202G)
Mengjafræði: Vensl; jafngildisvensl og raðvensl. Teljanleg mengi og óteljanleg. Samstétta mengi. Uppbygging talnakerfanna. Frumatriði um firðrúm: Opin mengi og lokuð, samleitnar runur og Cauchy-runur, þéttipunktar. Samfelldni og samfelldni í jöfnum mæli. Samleitni og samleitni í jöfnum mæli. Fallarunur og fallaraðir. Þjöppuð firðrúm. Samhangandi mengi. Fullkomin firðrúm og fullkomnun firðrúms. Fastapunktssetning Banachs; tilvistarsetning um afleiðujöfnu fyrstu raðar. Kennslubækur ákveðnar síðar.
Stærðfræðigreining IV (STÆ401G)
Markmið: Að kynna fyrir nemendum Fourier-greiningu og hlutafleiðujöfnur og hagnýtingu á þeim.
Lýsing: Fourier-raðir og þverstöðluð fallakerfi, jaðargildisverkefni fyrir venjulega afleiðuvirkja, eigingildisverkefni fyrir Sturm-Liouville-virkja, Fourier-ummyndun, bylgjujafnan, varmaleiðnijafnan og Laplace-jafnan leystar á ýmsum svæðum í einni, tveimur og þremur víddum með aðferðum úr fyrri hluta námskeiðsins, aðskilnaður breytistærða, grunnlausn, Green-föll, speglunaraðferðin.
Töluleg greining (STÆ405G)
Einingar til BS-prófs gilda aðeins fyrir annaðhvort REI201G Stærðfræði og reiknifræði eða STÆ405G Töluleg greining.
Undirstöðuhugtök um nálgun og skekkjumat. Lausn línulegra og ólínulegra jöfnuhneppa. PLU-þáttun. Margliðubrúun, splæsibrúun og aðhvarfsgreining. Töluleg nálgun afleiða og heilda. Útgiskun. Töluleg lausn upphafshafsgildisverkefna fyrir venjuleg afleiðujöfnuhneppi. Fjölskrefaaðferðir. Töluleg lausn jaðargildisverkefna fyrir venjulegar afleiðujöfnur.
Gefin er einkunn fyrir skriflegar úrlausnir á forritunarverkefnum og vegur hún 30% af heildareinkunn. Stúdent verður að hafa lágmarkseinkunn 5 bæði fyrir verkefni og lokapróf.
- Haust
- Fjármálagerningar
- Algebra
- Kennileg línuleg tölfræðilíkönBE
- Grundvöllur tölfræðinnarB
- Hagnýt Bayesísk tölfræðiB
- Vor
- Hagnýt gagnagreining
- Lögfræði B - þættir úr fjármálalögfræði
- BS-verkefniB
- Samæfingar í stærðfræðiB
Fjármálagerningar (VIÐ503G)
Í námskeiðinu er fjallað um vaxtamarkaði og hvernig eingreiðsluvaxtaferlar eru leiddir út. Verðlagning mismunandi tegunda skuldabréfa er skoðuð og farið er yfir eiginleika og áhættu helstu skuldabréfa á markaði með áherslu á íslenskan vaxtamarkað. Verðlagning afleiðna er því næst skoðuð og hverjir eru helstu eiginleikar þeirra. Sérstaklega eru skoðaðir framvirkir samningar, skiptasamningar og valréttir. Farið er yfir tilgang og eðli afleiðuviðskipta og hverjir helstu áhættuþættirnir eru.
Algebra (STÆ303G)
Grúpur, dæmi og helstu undirstöðuatriði. Samhverfugrúpur. Mótanir og normlegar hlutgrúpur. Baugar, dæmi og helstu undirstöðuatriði. Heilbaugar. Baugamótanir og íðul. Margliðubaugar og þáttun margliða. Valin viðfangsefni.
Kennileg línuleg tölfræðilíkön (STÆ310M)
Einföld og fjölvíð aðhvarfsgreining, fervikagreining og samvikagreining, ályktanir, dreifni og samdreifni metla, mátpróf með frávika- og áhrifagreiningu, samtíma ályktanir. Almenn líkuleg líkön sem ofanvörp, fervikagreining sem sértilvik, samtíma öryggismörk á samanburðarföll. R notað í verkefnum. Lausnum verkefna er skilað i LaTeX og PDF.
Til viðbótar er tekið efni eftir vali, t.d. útvíkkuð línuleg líkön (GLM), ólínuleg aðhvarfsgreining og/eða slembiþáttalíkön (random/mixed effects models) og/eða skóreimaaðferðir (bootstrap) o.s.frv.
Nemendur kynna lausnir verkefna, sem áður hefur verið skilað inn í gegnum vefsíðu.
Námskeiðið er kennt þegar ártalið er slétt tala.
Grundvöllur tölfræðinnar (STÆ313M)
Sennileiki, tæmandi stærð, tæmanleikareglan, þvælistiki, skilyrðingarreglan, óbreytileikareglan, sennileikafræði. Tilgátupróf, einfaldar og samsettar tilgátur, Neyman-Pearson-setningin, styrkleiki, UMP-próf, óbreytileg próf. Umröðunarpróf, sætispróf. Bilmat, öryggisbil, öryggisstig, öryggissvæði. Punktmat, bjagi, meðalferskekkja. Verkefnum er skilað með notkun LaTeX og gilda 20% af lokaeinkunn.
Hagnýt Bayesísk tölfræði (STÆ529M)
Markmið: Að kenna nemendum að beita ýmsum aðferðum úr Bayesískri tölfræði fyrir greiningu gagna. Námsefni: Fræðileg undirstaða Bayesískrar ályktunartölfræði, fyrirframdreifingar, gagnadreifingar og eftirádreifingar. Bayesísk ályktunartölfræði fyrir stika í einvíðum og margvíðum líkindadreifingum: tvíkosta-; normal-; Possion; veldis-; margvíð normal-; fjölkostadreifing. Mat á gæðum líkans og samanburður á líkönum: Bayesísk p-gildi; deviance information criterion (DIC). Bayesísk hermun: Markov keðju Monte Carlo (MCMC) aðferðir; Gibbs sampler; Metropolis-Hastings skref; mat á samleitni. Línuleg líkön: normal línuleg líkön; stigskipt normal línuleg líkön; almenn línuleg líkön. Áhersla á greiningu gagna með forritum eins og Matlab og R.
Hagnýt gagnagreining (MAS202M)
Námskeiðið fjallar um tölfræðiúrvinnslu í forritinu R. Gert er ráð fyrir að nemendur hafi grunnþekkingu í tölfræði og tölfræðihugbúnaðnum R. Æskilegt er að nemendur þekki til margbreytu aðhvarfsgreiningar (e. multiple linear regression). Nemendur læra að beita hinum ýmsu tölfræðiaðferðum í R (ss. classification methods, resampling methods, linear model selection og tree-based methods). Námskeiðið er kennt á tólf vikum og verður það á vendikennsluformi þar sem nemendur lesa námsefni og horfa á myndbönd áður en þeir mæta í tíma og fá svo aðstoð með fyrirliggjandi verkefni í tímum.
Lögfræði B - þættir úr fjármálalögfræði (VIÐ601G)
Í námskeiðinu er fjallað um löggjöf og lagaleg viðfangsefni sem snerta fjármálamarkaði, fjármál fyrirtækja og rekstur þeirra.
Fjallað verður um lagaumhverfi fjármálafyrirtækja, löggjöf um verðbréfaviðskipti, ábyrgð sem hvílir á sérfræðingum, auðgunarbrot, lögfræðileg viðfangsefni sem tengjast kaupum og sölum fyrirtækja, áreiðanleikakannanir o.fl. Þá verður fjallað um samninga og skjöl sem reynir á á fjármálamarkaði, þar á meðal lánasamninga, kaupsamninga, og hluthafasamninga.
BS-verkefni (STÆ262L)
Nemendur velja sér verkefni í samráði við einhvern kennara námsbrautar í stærðfræði. Verkefnið er unnið með leiðsögn tveggja manna og skal a.m.k. annar þeirra tilheyra námsbraut í stærðfræði. Námsbraut í stærðfræði þarf að staðfesta áætlun sem nemandi og leiðbeinendur leggja fram í sameiningu. Verkefninu lýkur með samningu ritgerðar og fyrirlestri. Ekki er gefin einkunn fyrir verkefnið en umsjónarmenn stafesta að nemandi hafi staðist námskröfur.
Upplýsingar um skil á verkefni
Skil eru í maí fyrir júníbrautskráningu
Skil eru í september fyrir októberbrautskráningu
Skil eru í janúar fyrir febrúarbrautskráningu
Í upphafi misseris koma nemandi og leiðbeinandi sér upp tímalínu um skil á verkefni
Skil á fullbúnu verkefni til leiðbeinanda/umsjónarkennara er 10. maí/ september/ janúar
Skil nemanda inn á Skemmu eru í síðasta lagi 30. maí/ september/ janúar og senda þarf staðfestingu um samþykkt skil á nemvon@hi.is
Einkunn frá leiðbeinanda á að hafa borist skrifstofu í síðasta lagi 30. maí/ september/ janúar
Samæfingar í stærðfræði (STÆ402G)
Ætlast er til að nemendur hafi lokið a.m.k. 120 ECTS einingum. Nemendur sem ekki hafa lokið 120 ECTS einingum og hafa áhuga á að taka námskeiðið þurfa að fá samþykki umsjónarmanns.
Stúdentar skila ritgerðum og halda fyrirlestra um valin efni.
- Haust
- R forritunV
- NetafræðiVE
- Tölulegar lausnir á hlutafleiðujöfnumVE
- GagnasafnsfræðiV
- Inngangur að fjárhagsbókhaldiV
- Rekstrarhagfræði IV
- Lögfræði A - almenn viðskiptalögfræðiV
- EinstaklingsskattarétturV
- Ársreikningagerð AV
- Fjölbreytileg nálgun á stærðfræðikennslu í framhaldsskólumVE
- RafmyntirV
- Vor
- Eindahagfræði II (Rekstrarhagfræði II)V
- Hagnýt gagnagreiningV
- Mál- og tegurfræðiVE
- Grundvöllur líkindafræðinnarV
- RekstrarbókhaldV
- ReikningsskilV
- Fjármál IIV
- Ársreikningagerð BV
- Hagnýt Fourier greiningV
- Stýring fjármálasafnaV
R forritun (MAS102M)
Í námskeiðinu munu nemendur framkvæma hefðbundnar tölfræðiaðferðir á raunverulegum gagnasöfnum. Áhersla verður lögð á fjölbreytu aðhvarfsgreiningu (e. multiple linear regression). Nemendur beita fáguðum aðferðum við myndræna framsetningu sem og sjálfvirka skýrslugerð. Námsmat verður í formi raunhæfra verkefnia þar sem nemendur framkvæma ofangreind atriði á raunverulegum gagnasöfnum með það fyrir augum að svara rannsóknarspurningum.
Netafræði (STÆ520M)
Net, netamótanir og netaeinsmótanir. Hlutnet, spannandi hlutnet. Vegir, tengd net. Örvanet. Tvíhlutanet. Euler-net og Hamilton-net; setningar Chvátals, Pósa, Ores og Diracs. Keppnisnet. Tré, spannandi tré, trjáfylkjasetningin, Cayley-setningin. Vegin net, reiknirit Kruskals og Dijkstra. Flæðinet, setning um hámarksflæði og lágmarkssnið, Ford-Fulkerson-reikniritið, Menger-setningin. Spyrðingar, Berge-setningin, giftingarsetning Halls, König-Egerváry-setningin, Kuhn-Munkres-reikniritið. Óaðskiljanleg net, tvítengd net. Lagnet, Euler-formúla, Kuratowski-setningin, nykurnet. Greypingar neta í fleti, Ringel-Youngs-Mayer-setningin. Litanir, litunarsetning Heawoods, Brooks-setningin, litamargliða; leggjalitanir, Vizing-setningin.
Tölulegar lausnir á hlutafleiðujöfnum (STÆ537M)
Markmið námskeiðsins er að kynna aðferðir til tölulegrar úrlausnar á hlutafleiðujöfnum og forritun þeirra.
Viðfangsefni:
Fleyggerar hlutafleiðujöfnur (varmajafnan), breiðgerar hlutafleiðujöfnur (bylgjujafnan) og sporgerar hlutafleiðujöfnur (Poisson- og Laplace jafnan). Mismunaaðferðir, samleguaðferðir og bútaaðferðir. Stöðugleiki lausnaraðferða, CFL skilyrðið og Crank-Nicolson skemað. Ólínulegar hlutafleiðujöfnur og Turing-mynstur. Samband slembigangs og Poisson/Laplace hlutafleiðujafna.
Gagnasafnsfræði (TÖL303G)
Gagnasöfn og gagnasafnskerfi. Einindavenslalíkanið. Töflulíkanið og töflualgebra. SQL fyrirspurnarmálið. Hagkvæmni geymsluaðferða og úrvinnsluaðferða. Fallákveður, lyklar og staðalskipulag gagna í venslalíkaninu. Bestun fyrirspurna. Hreyfingar, samhliða vinnsla hreyfinga og læsingar. Endurbygging gagnasafna. Öryggi gagnasafna og aðgangsheimildir. Vöruhús gagna.
Inngangur að fjárhagsbókhaldi (VIÐ103G)
Námskeiðinu er ætlað að gera nemendur þokkalega læsa á ársreikninga hlutafélaga. Eðli og tilgangur fjárhagsbókhalds og reikningsskila verða í forgrunni. Kynntar verða þær meginforsendur og grundvallarreglur er reikningsskil byggja á. Sérstök áhersla verður lögð á samhengið milli einstakra kafla í ársreikningnum.
Stefnt er að því að nemendur geti greint mikilvægar upplýsingar í ársreikningi hlutafélags og túlkað þær fyrir þeim sem þurfa á þessum upplýsingum að halda.
Rekstrarhagfræði I (VIÐ105G)
Markmið námskeiðsins er að kenna nemendum grunnatriði í hagrænni hugsun og meginkenningum í rekstrarhagfræði þannig að þeir kunni skil á helstu hugtökum og notkun. Framboð, eftirspurn og teygni. Neytendahagfræði. Markaðir, skilvirkni og velferð. Skattkerfi og áhrif skattlagningar. Ytri áhrif, samgæði og auðlindir. Ósamhverfar upplýsingar, freistnivandi og hrakval. Kostnaður við framleiðslu, samkeppni, fákeppni, einokun. Vinnumarkaður, mismunun og tekjuskipting. Verkaskipting og verslun.
Lögfræði A - almenn viðskiptalögfræði (VIÐ302G)
Í námskeiðinu er farið yfir atriði í íslenskri lögfræði m.a. helstu réttarheimildir, uppbyggingu á íslensku réttarkerfi og stjórnsýslu. Þá verður farið yfir réttarsvið sem horfa ber til í daglegum viðskiptum.
Tilgangur námskeiðsins er að undirbúa nemendur undir viðfangsefni sem líkleg eru til þess að verða á vegi þeirra í störfum í viðskiptalífinu. Lögð er áhersla að nemendur fái kynningu á lögfræðinni til að geta betur greint lögfræðileg úrlausnarefni og tekið á þeim áður en þau verða að lögfræðilegum vandamálum.
Helstu viðfangsefni til umfjöllunar eru: Réttarheimildir, stjórnsýsluréttur, samningar, tilurð þeirra, túlkun og gildi, helstu reglur um lausfjárkaup og úrræði samningsaðila vegna galla og annarra vanefnda ásamt fullnustugerðum. Fjallað verður um gjaldþrotaskipti, kröfurétt, félaga- og samkeppnisrétt og persónuvernd.
Einstaklingsskattaréttur (VIÐ501G)
Á námskeiðinu verður farið yfir meginreglur ísl. skattalaga um skattskylda aðila og skattskyldar tekjur þar á meðal hvaða gjöld heimilt er að draga frá þeim. Sérstök áhersla verður lögð á uppgjör tekjuskattsstofna hjá einstaklingum og sjáfstætt starfandi mönnum með úrlausnum á dæmum og raunhæfum verkefnum. Kynnt verður gerð skattframtals einstaklinga og hjóna svo og atvinnurekstrarframtals. Fjallað verður um ákvörðun hvers konar bóta og afslátta frá skatti. Farið verður yfir grundvallarreglur réttarfars í skattamálum, endurákvarðanir á sköttum og afleiðingar af vísvitandi röngum skattskilum. Veitt verður innsýn í meginreglur laga um virðisaukaskatt og tryggingagjald. Að námskeiðinu loknu er við það miðað að námsmaður geti talið fram fyrir einstaklinga og lítil fyrirtæki svo og kært skattákvörðun ef hún er röng að hans mati.
Ársreikningagerð A (VIÐ505M)
Námskeiðið er ætlað nemendum sem velja F- og R-línu (fjármál- og reikningshald). Markmið námskeiðsins er að nemendur öðlist þekkingu og skilning á atriðum sem stjórnendur fyrirtækja þurfa að tileinka sér til að geta lagt fram ársreikning samkvæmt viðurkenndum reikningsskilaaðferðum. Í námskeiðinu verður fjallað um helstu reglur í reikningshaldi sem gilda samkvæmt alþjóðlegum reikningsskilastöðlum og ákvæðum íslenskra laga. Farið verður yfir: formkröfur reikningsskila, rekstrarreikning, efnahagsreikning og sjóðstreymi. Meðferð tekna og kostnaðar, meðhöndlun birgða, viðskiptakröfur, varanlega rekstrarfjármuni, óefnislegar eignir, tekjuskatt, virðisrýrnunarpróf, bókun áhættufjármuna og skulda, skammtímaskuldir, langtímalán og eiginfjárliði. Verkefni verða lögð fyrir.
Fjölbreytileg nálgun á stærðfræðikennslu í framhaldsskólum (SNU503M)
Námskeiðið verður næst kennt haustið 2024. Það er að öllu jöfnu kennt annað hvert ár.
Á námskeiðinu læra nemar að skipuleggja stærðfræðikennslu í framhaldsskóla þannig að hún sé fjölbreytt og taki mið af þörfum allra nemenda. Áhersla verður lögð á að nemendur kynnist fjölbreyttu námsumhverfi og kennsluháttum sem byggja á rannsóknum á stærðfræðinámi og -kennslu. Í námskeiðinu er fjallað um markmið stærðfræðináms og hvernig þau birtast í námskrám og stefnuritum bæði hér á landi og í nágrannalöndum. Nemendur lesa um og fá tækifæri til að reyna í verki fjölbreyttar leiðir við að meta og greina stærðfræðilega hæfni.
Vinnulag í námskeiðinu felst í fyrirlestrum, verkefnavinnu kynningum, vettvangstengdum viðfangsefnum og gagnrýnni umræðu um viðfangsefni. Áhersla verður lögð á að nemar ræði um áskoranir sem upp geta komið við kennslu og leiti sjálfir leiða við lausn á ýmsum vandamálum sem lúta að stærðfræðinámi og -kennslu.
Rafmyntir (STÆ532M)
Í byrjun námskeiðsins eru grunnhugtök rafmynta kynnt til sögunnar, svo sem veski, veskisföng og færslur. Nemendur kynnast dulkóðun, færslum, blokkum
og keðjum. Rafmyntin Broskallar verður notuð sem sýnidæmi í öllu námskeiðinu.
Nemendur þýða sín eigin veski og fara nægilega djúpt í algrímin á bak við myntirnar til að geta sett saman sínar eigin færslur af Linux skipanalínu og lesið dæmigerðan veskiskóða sem skrifaður er í C++.
Nemendur læra hvernig kalla má á veski úr öðrum hugbúnaði, m.a. til að greina flæði myntarinnar.
Nemendur læra hvernig má útfæra ýmsar viðbætur við hefðbunda notkun rafmynta, s.s. dulkóðun skilaboða, keyrslu hugbúnaðar sem svar við greiðslu o.s.frv. Nemendur setja upp eigin dæmi um viðbætur og læra m.a. hvernig má geta frumskipti (e. atomic swap) á mismunandi myntum.
Skilaverkefni verða einstaklingsbundin og valin úr nokkrum verkefnagerðum í formi (1) lausna sem byggja á notkun veskis á skipanalínu, (2) greinargerða sem mynda ítarefni í tutor-web kerfið (3) smáforrita sem bregðast við færslum sem koma inn á tiltekið veskisfang eða í tiltekið veski (4) forrita sem tala við kauphallir og/eða (5) ný notendaandlit sem bæta virkni framenda tiltekins veskis.
Allt efni námskeiðsins og skilaverkefni eru á ensku. Skilaverkefni enda sem hluti af opna vefkerfinu tutor-web.
Nemendur læra hvernig kalla má á veski úr öðrum hugbúnaði, m.a. til að greina flæði myntarinnar.
Nemendur læra hvernig má útfæra ýmsar viðbætur við hefðbunda notkun rafmynta, s.s. dulkóðun skilaboða, keyrslu hugbúnaðar sem svar við greiðslu o.s.frv. Nemendur setja upp eigin dæmi um viðbætur og læra m.a. hvernig má geta frumskipti (e. atomic swap) á mismunandi myntum og nota þá Broskalla sem tilkyninngakerfi.
Stefnt er að því að námskeiðið verði kennt sem lesnámskeið eða sjálfsnám, en nánari framkvæmd fer eftir þátttöku.
Eindahagfræði II (Rekstrarhagfræði II) (HAG201G)
Námskeiðið er framhald af Inngangur að hagfræði/Rekstrarhagfræði I. Áhersla er lögð á nemar öðlist bæði víðtækari og dýpri þekkingu á kenningum hagfræðinnar. Það verður gert með því að gera frekari grein fyrir helstu kenningum í rekstrarhagfræði og sýna hvernig nota megi fræðin til að fjalla skipulega um margvísleg mál.
Hagnýt gagnagreining (MAS202M)
Námskeiðið fjallar um tölfræðiúrvinnslu í forritinu R. Gert er ráð fyrir að nemendur hafi grunnþekkingu í tölfræði og tölfræðihugbúnaðnum R. Æskilegt er að nemendur þekki til margbreytu aðhvarfsgreiningar (e. multiple linear regression). Nemendur læra að beita hinum ýmsu tölfræðiaðferðum í R (ss. classification methods, resampling methods, linear model selection og tree-based methods). Námskeiðið er kennt á tólf vikum og verður það á vendikennsluformi þar sem nemendur lesa námsefni og horfa á myndbönd áður en þeir mæta í tíma og fá svo aðstoð með fyrirliggjandi verkefni í tímum.
Mál- og tegurfræði (STÆ402M)
Kennt á vormisseri þegar ártal er oddatala.
Málrúm, mál og ytri mál. Lebesgue-málið á Rn. Mælanleg föll, setning um einhalla samleitni, hjálparsetning Fatous. Heildanleg föll, setning Lebesgues um yfirgnæfða samleitni og afleiðingar. Ójöfnur Hölders og Minkowskis, Lp-rúm, málrúma, setningar Tonellis og Fubinis. Tvinnmál. Jordan-liðun og Lebesgue-liðun mála, Radon-Níkodým-setning. Samfelld línuleg föll á Lp-rúmum. Myndmál, innsetningarsetning fyrir Lebesgue-heildið á Rn.
Grundvöllur líkindafræðinnar (STÆ418M)
Líkindi á grundvelli mál- og tegurfræði.
Viðfangsefni: Líkindi, útvíkkunarsetningar, óhæði, væntigildi. Borel-Cantelli-setningin og 0-1 lögmál Kolmogorovs. Ójöfnur og hin veiku og sterku lögmál mikils fjölda. Samleitni í hverjum punkti, í líkindum, með líkunum einn, í dreifingu og í heildarviki. Tengiaðferðir. Höfuðmarkgildissetningin. Skilyrt líkindi og væntigildi.
Rekstrarbókhald (VIÐ204G)
Kynning á rekstrarbókhaldi. Kynnt verða fjölmörg kostnaðarhugtök og kostnaðargreining (núllpunktsgreining). Farið yfir helstu aðferðir við bókun framleiðslukostnaðar og skiptingu óbeins kostnaðar. Munurinn á rekstrarreikningi út frá aðferð fjárhagsbókhalds og með framlegðarútreikningi. Áætlanagerð, staðalbókhald og frávikagreining. Frammistöðumat deilda og afurða og skipting kostnaðar. Að námskeiðinu loknu eiga nemendur að hafa góðan skilning á mikilvægi rekstrarbókhalds við ákvarðanatöku um rekstur fyrirtækja.
Reikningsskil (VIÐ401G)
Námskeiðið er framhald af Inngangi að fjárhagsbókhaldi. Lögð er áhersla á færslutæknileg atriði í bókhaldi og við lokun uppgjörstímabils, niðurfærsla viðskiptakrafna, afskriftir varanlegra rekstrarfjármuna, viðskiptavild og aðrar óefnislegar eignir, birgðamatsaðferðir, afföll og yfirverð á skuldabréfum, ábyrgðarskuldbindingar, tekjuskattsskuldbinding o.fl. Flokkun áhættufjármuna og peningalegra eigna. Sjóðstreymi. Fyrirmæli laga um ársreikninga verða skoðuð rækilega og höfð hliðsjón af alþjóðlegum reikningsskilastöðlum, IFRS. Útreikningur tekjuskatts er tekinn til meðferðar. Lögð verða verkefni fyrir nemendur í því skyni að gera þá færa um að semja tiltölulega einfaldan ársreikning. Skilaskylt heimaverkefni.
Fjármál II (VIÐ402G)
Góðir stjórnarhættir og sérstaklega vönduð fjármálastjórnun hafa úrslitaáhrif á rekstrarárangur fyrirtækja. Fjármál II er framhald af Fjármálum I þar sem meginviðfangsefnið er fyrirtækið sjálft og hvernig það er rekið í fjármálalegu tilliti. Þá er farið yfir hvað eru góðir stjórnarhættir, hvernig hvatarnir liggja innan fyrirtækja og hvaða áhrif þeir kunna að hafa á fjárhagslega afkomu félagsins. Meginviðfangsefni námskeiðsins er fjármálastjórnun, þ.e. fjármagnsskipan félagsins, skammtíma fjármögnun og langtímafjármögnun, gerð fjármögnunaráætlana, arðgreiðslur til hluthafa, fjárfestingarákvarðanir félagsins, hlutskipti og hegðan þess á fjármálamarkaðnum sjálfum. Þá verður einnig farið yfir þær ákvarðanir sem stjórnendur standa frammi fyrir þegar verulegir fjárhagserfiðleikar eiga sér stað.
Ársreikningagerð B (VIÐ604M)
Námskeiðið er beint framhald af námskeiðinu Ársreikningagerð A, sem kennt er á haustmisseri. Reiknað er með að nemendum þessa námskeiðs sé fullkunnugt efni fyrra námskeiðsins.
Í námskeiðinu verður fjallað um gildandi reglur í reikningshaldi samkvæmt IFRS og ákvæðum íslenskra laga. Umfjöllunarefni: sjóðstreymi, tekjuskattur, hagnaður á hlut, fjármálagerningar, tekjuskráning, skuldbindingar, fjármögnunarleigusamningar, fastafjármunir til sölu og aflagður rekstur, fjárfestingaeignir, skuldbindingar, upplýsingar í ársreikningi og tengdir aðilar.
Verkefni verða lögð fyrir og er skilaskylda á þeim.
Áskilinn réttur til breytingar á námskeiðslýsingu.
Hagnýt Fourier greining (STÆ211G)
Fourier-raðir á rauntalna og tvinntalnaformi. Kósínus- og sínus-raðir á takmörkuðum bilum. Umfjöllun um samleitni Fourier-raða , bæði samleitni í punkti and samleitni í jöfnum mæli. Fernings skekkja og lágmarks fernings skekkja, lágmörkunar eiginleikar Fourier-raða, ójafna Bessel, jafna Parsevals, róf ráðanna. Fourier-raðir fyrir stofnföll og afleiður.
Áhersla er lögð á hagnýtingar í eðlisvísindum og lausnir verkefna.
Stýring fjármálasafna (VIÐ604G)
Fjallað verður um þá aðferðafræði sem liggur að baki ákvarðanatöku fjárfesta og fyrirtækja við myndun og stýringu eigna- og skuldasafna. Áhættustýring fyrirtækja verður einnig tekin fyrir.
Námskeiðið er kennt á ensku
Hafðu samband
Nemendaþjónusta VoN
s. 525 4466 - nemvon@hi.is
Opið virka daga frá 09:00-15:30
Einnig er hægt að hafa samband í gegnum netspjall hér á síðunni (í samræmi við þjónustutíma)
Tæknigarður - Dunhaga 5, 107 Reykjavík
Askja - Sturlugata 7, 102 Reykjavík
Fylgstu með Verkfræði- og náttúruvísindasviði:

Hjálplegt efni
Ertu með fleiri spurningar? Hér finnurðu svör við ýmsum þeirra og upplýsingar um ýmislegt annað sem gott er að hafa í huga þegar þú velur nám.