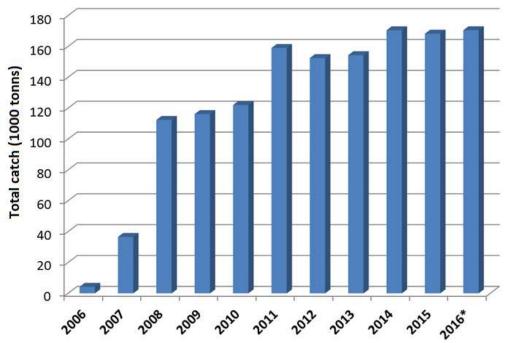
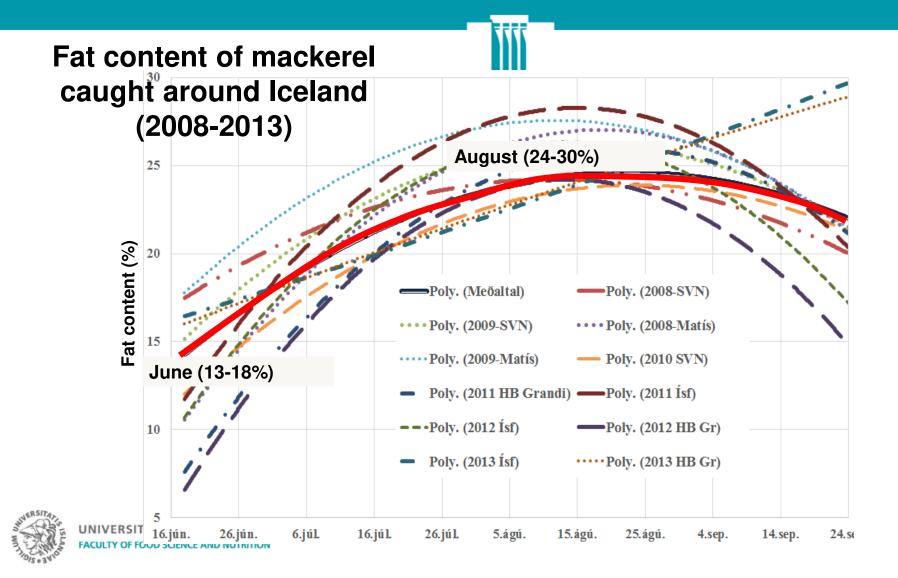
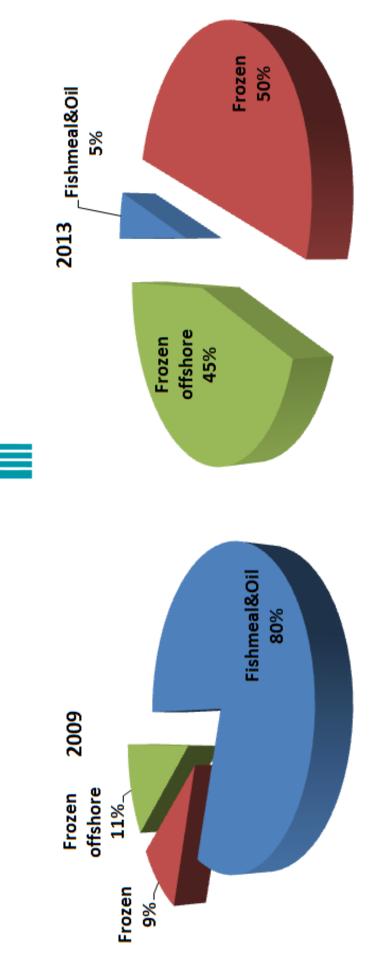


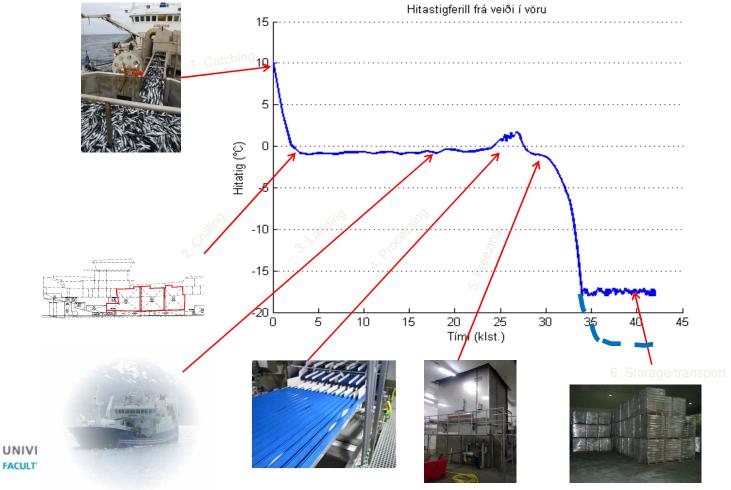
Increasing value of the Atlantic mackerel (Scomber scombrus)


Hildur Inga Sveinsdóttir Stefán Þór Eysteinsson Guðrún Svana Hilmarsdóttir



Total mackerel catch 2006 - 2016





Viscera: Water content 73%

FACULT

Atlantic mackerel fillets

Hildur Inga Sveinsdóttir Supervisors : Magnea Karlsdóttir Ph.D., Professor María Gudjónsdóttir and Professor Sigurjón Arason

hilduringa@matis.is

Research questions

- Can mackerel fillets caught in Iceland have a shelf life of 12 months or more in frozen storage?
- Can spectroscopy be used to gain information about sensory attributes of Atlantic mackerel?
- Can Atlantic mackerel be skinned and high quality fillets without skin be produced?

- Specific procedure during filleting needed.
- How do we prolong shelf life?
 - Antioxidants
 - Packaging

How do we evaluate the shelf life?

- Many measurements performed, focusing mainly on lipid oxidation.
- Sensory evaluation

How do we evaluate the shelf life?

- Many measurements performed, focusing mainly on lipid oxidation.
- Sensory evaluation

- Without treatment and in traditional packaging mackerel fillets have a shelf life of 4 – 8 months at -25°C.
- With antioxidants Shelf life of 15 months
- With vacuum packaging Shelf life of up to at least 15 months (measurements still ongoing)

- Without treatment and in traditional packaging mackerel fillets have a shelf life of 4 – 8 months at -25°C.
- With antioxidants Shelf life of 15 months
- With vacuum packaging Shelf life of up to at least 15 months (measurements still ongoing)

- Without treatment and in traditional packaging mackerel fillets have a shelf life of 4 – 8 months at -25°C.
- With antioxidants Shelf life of 15 months
- With vacuum packaging Shelf life of up to at least 15 months (measurements still ongoing)

Deep skinning

- Why deep skinning?
 - Dark muscle under skin sensitive
 - New possible markets
 - Valuable products
 from skin and dark

Deep skinning

- Results show deep skinning is possible
- Vacuum packed skinless fillets had a shelf life of 12-15 months at -25°C

Research grants - Participants

Effect of Calanus finmarchicus on pelagic fish processing

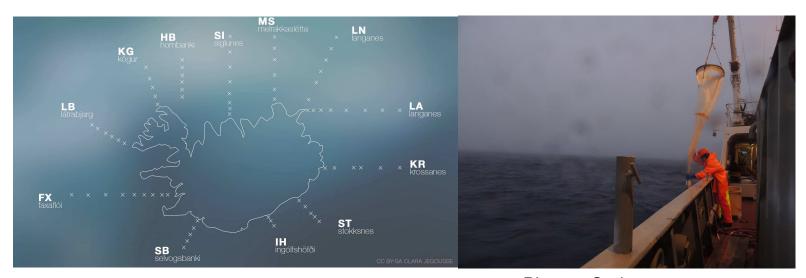
Supervisors : María Gudjónsdóttir, Magnea Karlsdóttir, Sigrún Jónasdóttir and Sigurjón Arason

Stefan@matis.is

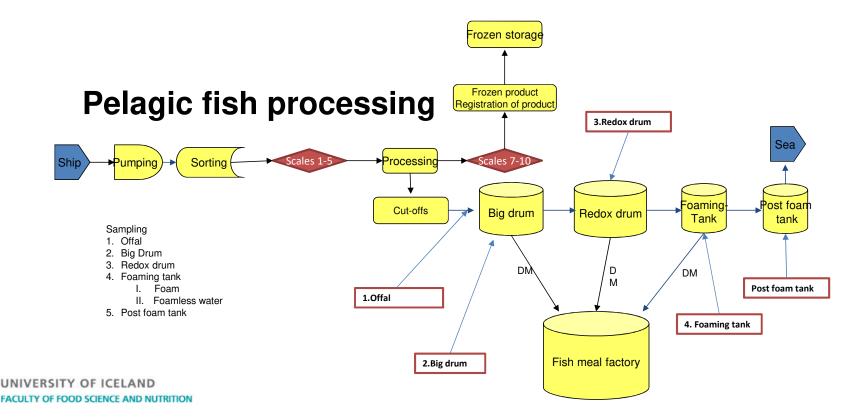
Research Questions

Research questions

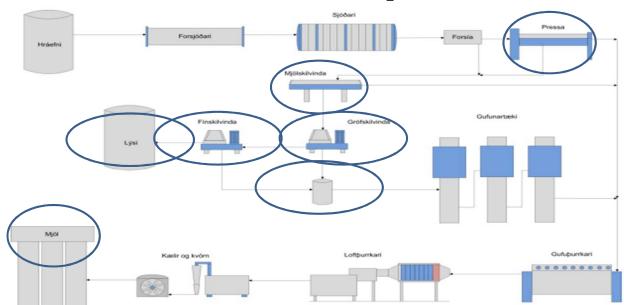
- Properties of Calanus around Iceland
- Which factors have negative effects on mackerel cut offs as a raw material
- The effects of *Calanus* on fishmeal oil processing


 ACULTY OF FOOD SCIENCE And oil processing

Properties of Calanus around Iceland


Picture: Sampling (Clara Jegousse)

Picture: Spring survey (Anouk Ly)


Which factors have negative effects on mackerel cut offs as a raw material

The effects of *Calanus* on fishmeal and oil processing

Contents lists available at ScienceDirect

Trends in Food Science & Technology

journal homepage: www.elsevier.com/locate/tifs

Review

Review of the composition and current utilization of *Calanus finmarchicus* – Possibilities for human consumption

Stefán Th Eysteinsson^{a,b,*}, María Gudjónsdóttir^a, Sigrún H. Jónasdóttir^c, Sigurjón Arason^{a,b}

- Life history of Calanus finmarchicus
- How it's utilized today
- Future potential
- Environmental impact of catching
 C. finnmarchicus

Picture: *Calanus* finmarchicus (Jón Baldur Hlíðberg)

^a University of Iceland, Faculty of Food Science and Nutrition, Vinlandsleid 14, 113, Reykjavík, Iceland ^b Matis Food and Biotech R&D, Vinlandsleid 12, 113, Reykjavík, Iceland

c Technical University of Denmark, National Institute of Aquatic Resources, Section for Oceans and Arctic, Kemitorvet, 2800 Kgs, Lyngby, Denmark

Results

Preliminary results

- Observed
 differences in lipid
 profile and lipid
 amounts
 depending on
 location
- Astaxanthin and chitin amounts
 similar

Results

Mynd: Sýnataka (Clara Jegousse)

- Observed differences in lipid profile
 - C20:1n9 & C22:1n11
 - Highest in the south
 - C20:5n3 (EPA)
 - Highest in the west
 - C22:6n3 (DHA)
 - Highest in the north

Picture: Sampling(Clara Jegousse)

Results

- Which factors have negative effects on mackerel cut offs as a raw material
 - Increased stomach content
 - Temperature
 - Amount of fish caught
 - Increased FFA, PV and secondary oxidation
 - Loss of phospholipids

Results

- The effects of Calanus on fishmeal and oil processing
 - Low TVN in the raw material
 - Higher ratio of dry material in stickwater
 - Increase in Cadaverine, Tyramine and Putrescine in fish meal
 - Not a significant increase in FFA in fish oil

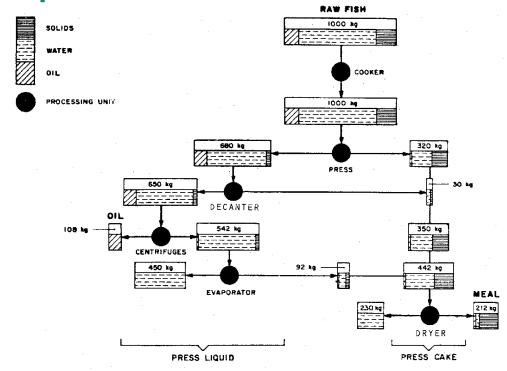
Research grants - Participants

Fishmeal for Human Consumption

Guðrún Svana Hilmarsdóttir Supervisors : Professor María Gudjónsdóttir, Magnea Karlsdóttir Ph.D., and Professor Sigurjón Arason

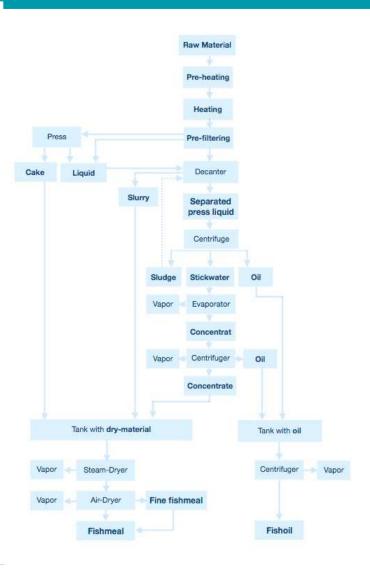
gsh9@hi.is

Reseach questions


- How can we get higher-value product from traditional fishmeal plants?
 - We need to see and analyse what we've got
 - Production line and different raw materials
 - We need to optimise it accordingly / redesign

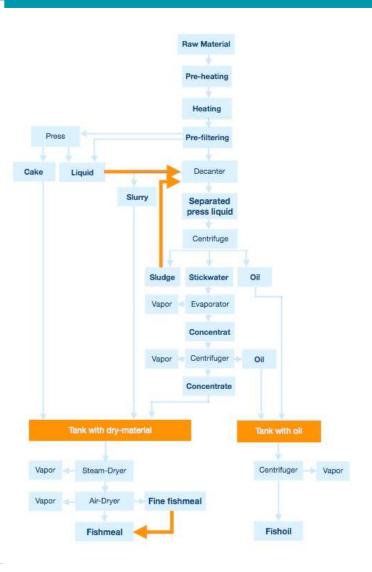
Traditional process

- Traditional processing in fishmeal and –oil differentiates between
 - Fat
 - Dry matter
 - Water
- Doesn't differentiate if there is quality difference within each phase categories
 - Proposed to investigate each processing step



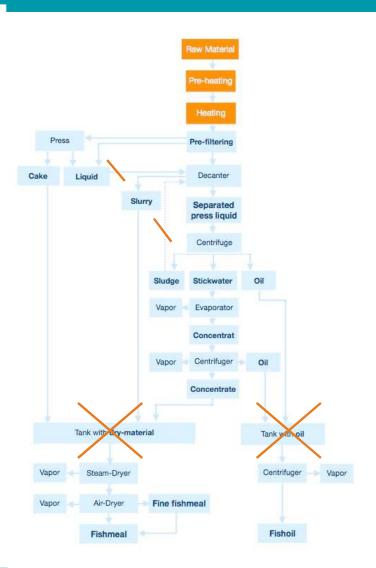
Síldarvinnslan hf.

- Fishmeal and -oil processing line 2017
 - Each step was sampled to see what's happening



Síldarvinnslan hf.

- Fishmeal and -oil processing line 2017
 - Circulates
 - Is mixed all together
 - LOWER QUALITY?



- First steps are crucial
- Proteins are sensitive
- Not mix the material
- Evaluate each side stream
 - Some material cooked more
 - How much does temperature matter?

What about the different raw materials at the beginning?

Pilot project

- Fresh material
- Different parts of the mackerel

Next steps

- Get the pilot project working with better equipment
- Try with different raw materials / species and different parts of the fish
- Apply that knowledge to the processing line at Síldarvinnslan hf. and see how it works in a full size production

Research grants - participants

Thank you for your attention

